Lingfield Education Trust
周 Mental Maths
$\underset{\sim \rightarrow 1}{1 \times 1}$ Calculation Policy

LET Mental Maths Calculation Policy

Contents


```
Pryd Year Group Plans pl2
Strategy Examples p31
```


Rationale

Logistics \& Timetabling

Best practice is for these strategies to be taught away from the main maths lesson as part of your fact fluency program for ten to fifteen minutes daily. This division from the main maths lesson is especially important for lower attainers as the strategies might not directly align with the main maths lessons, which will lead to cognitive overload.

We are aware of the timetable pressure for all subjects and so we feel a sensible approach to covering the skills taught in this document is as follows:

- EYFS and KS 1 this is covered by your daily fact fluency program (Number Sense, Mastering Number or Fluency Bee)
- LKS2 these skills should be combined with your multiplication tables program daily practice (fact fluency)
- UPKS2 these skills should be combined with your arithmetic program (fact fluency)

* You could have 3 days multiplication tables instead.

Pedagogical Approach

Too often flexible mental calculation strategies are left to chance - the chance that they will just emerge in lessons through discussion; the chance that teachers will teach them from their own knowledge bank; and the chance that someone will have taught them somewhere. Rarely, do most pupils stumble across effective mental strategies and this chance approach can mean pupils do not get taught flexible mental strategies and are often left to rely solely on longer, more formal written approaches that do not suit all calculations. Quite often they are kept solely for higher attainers, when in fact they empower all pupils.

This document aims to provide a structured, whole-school approach to directly teaching flexible mental calculation strategies to all pupils.

We have found that the most effective way to teach the strategies contained in this booklet is through these steps:

- Direct teacher modelling of worked examples
- Pupil practice on whiteboards of modelled strategy, including jottings. We feel that whiteboards allow pupils the freedom to concentrate on their jottings without worrying as much about presentation in books and for short fact fluency lessons books are time consuming.
- Well-placed reasoning lessons where pupils make decisions about the most effective strategy for given calculations. This stage is crucial as it is this reasoning that secures the learning.
- Regular chances to apply to varied fluency questions.

Assessment

Formative assessment should take place while pupils are working on their whiteboards and through discussion of the answers afterwards. There is no need for formal, summative assessment of these sessions, rather their effectiveness will be seen in improved fact fluency check scores, improved MTC scores, improved arithmetic scores and improved progress in pupil work books in main maths lessons.

Small Steps

The aim of directly teaching these strategies to all pupils is that every child learns effective approaches to a range of calculations, however often lower attainers struggle due to cognitive overload. This happens when too much variation is introduced too quickly.

The strategies in this document have been broken up into small steps so that pupils start from what they already know and move systematically through to the year group expectation with only one difference each step. This is how you capture all pupils - especially lower attainers. It may seem slow and repetitive but it is meant to be.

Revisiting Key Skills

Once pupils have learned basic number facts, including addition and subtraction facts to twenty and multiplication tables, it is tempting to see the work as complete. However, pupils will lose their automaticity if these facts are not constantly revisited. Should older pupils be practising basic number bonds still? No. However, they can practice them using place value with $7+3$ becoming $700+300$ or $0.7+0.3$

In addition to the automaticity gained in KS1, the strategies (e.g. hidden doubles, near doubles) need revisiting and it is for that reason that this document has the following strategies running through it from EYFS to KS1 to KS2 to ensure basic facts/strategies are always revisited for automaticity:

- Bonds to ten
- Near doubles (adjusting) and hidden doubles (adjusting)
- Near tens (adjusting)
- Partitioning
- Number lines
- Using place value and known facts for multiplication and division
- Doubling and halving for multiplication and division
- Flexible partitioning for division

Reasoning / Choice Lessons

Teaching strategies is not enough alone; pupils need to be given the chance to reason and decide about which strategies go best with which calculation. This is also a very simple yet effective way to build discussion, oracy and debate into your maths lessons to further deepen understanding.

The most effective way to allow pupils to reason about the most effective strategy for a given calculation is to present them with a grid like the below that should be populated with questions the pupils have strategies for and especially the strategy just taught.

There are then several options of how to use these grids:

- Ask pupils to select the questions that a given strategy suits and explain why
- Ask pupils to select the questions that a given strategy suits, explain why and complete the calculation
- Ask the pupils to identify what strategy should be used for each calculation and explain why
- Ask the pupils to identify what strategy should be used for each calculation, explain why and complete the calculation

As above, sometimes the activity does not need to be about the answer but the strategy.

$2+3$	$6+2$	$10+4$	$7+3$
$8+4$	$12+5$	$15+8$	$20+6$
$32+14$	$45+32$	$37+18$	$48+37$
$4567+687$	$32+33$	$406+10$	$4.56+23.76$

Application

In addition to regular reasoning/choice sessions another excellent way to reinforce the learning of these strategies is allowing pupils to apply them a wider, more varied range of questions.

Prior to the introduction of the KS2 Arithmetic Test in 2016, pupils completed a mental maths test and these questions still provide an excellent way to let children apply their mental calculation strategies.

Other effective resources include Rising Star Mental Maths Tests and Schofield \& Sims Mental Maths Tests. These, along with the old mental maths SATs, can both be found in the trust's shared maths resources folder under maths materials.

```
For this group of questions you will have 5 seconds to work out each answer and write it down.
    1.Write the number five hundred and two in digits
    2.Write a multiple of four between ten and eighteen
3.Write ten per cent as a fraction
4. How many metres are there in a kilometre
5}\mathrm{ Wite six-tenths as a decimal numbet
For this group of questions you will have 10 seconds to work out each answer and write it down
6 Look at your answer sheet. Circle the prime number.
7 A square has a perimeter of thirty-six centimetres. What is the length of each side?
8 What is sixteen thousand divided by four?
9 Write five-quarters as a mixed numben
10 What is twenty-five multiplied by eight
11 Write three factors of twelve.
12 What is two hundred milllitres less than one litre?
3 How many minutes are there in ten hours?
14 Ted runs ten kilometres every day for sixteen days. How many kilometres has he run altogether?
15 Write thirteen minutes past eleven at night as it would appear on a twenty-four-hour digital clock.
For this group of questions you will have 15 seconds to work out each answer and write it down.
16 Shannon scored fourteen in her first game of cards, nine in her second game and twenty-seven
    I6 in her third game. How much did she score altogether?
17 How many edges re there on a triangular prism?
8 A pie recipe needs eight apples and serves six people. How many apples would be needed
    for a pie sevving twelve people?
9. Round three thousand four hundred and ninety-nine to the nearest thousand.
20 Look at your answer sheet. Circle the largest volume.
```


Whole School Overview

Mental Calculation Expectations

Addition

$\stackrel{\sim}{2}$	- Perceptually subitise to 10 - Conceptually subitise to 5 - Find the total number of items in two groups, up to a total of 10 (combine and subitise, count all (aggregation), use known facts) - 1 more to 10 - Add zero, within numbers to 10
-	- Subitising $1-5$ - Recognizing numbers on tens frames - Add 1-digit to tens - Add 1 -digit to teens - Number Bonds to 10 - Bridging 10 single digits - Near doubles to 5, e.g. $3+2$
\pm	- Bridging 10 (TU + U) - 1-digit to a multiple of ten (e.g. 60 $+5)$ - Add multiples of 10 to a 2-digit number (e.g. $27+60$) - Add three 1 -digit numbers - Number Bonds to 20 - Number Bonds to 100 in 10 s - Add 10 to 2 -digit numbers using place value - Add 11 by adding 10 add 1 - Add 9 by add 10 take 1 - Near doubles to 10 , e.g $6+5$
?	- Add 100 to any 3 -digit number using place value - Bridging to 3 -digit - Add pairs of multiples of 10 up to 2 -digit using bonds - 2-digit Near Doubles (teens and tens, e.g. $14+13,30+20$) - 2 -digit near 10 s round up (e.g. 27 + 19/21) - Add any 2-digit numbers using partitioning - Add any 2-digit numbers using counting on

Find the total number of items in combine and subitise, count all aggregation), use known facts)

- Subitising $1-5$ frames
- Add 1-digit to tens
- Add-digit to teens
- Bridging 10 single digits
- Bridging $10(\mathrm{TU}+\mathrm{U})$ $+5)$
Add multiples of 10 to a 2 -digi $27+60$
- Number
- Number Bonds to 100 in 10 s

Add 10 2-digif numbers using

- Add 9 by adding 10 add
- Near doubles to 10 , e.g $6+5$
- using place value
- Add pairs of multiples of 10 up to 2-digit using bonds
- 2-digit Near Doubles (teens and
- fens, e.g. $14+13,30+20$)

2 -digit near 10 s round up (e.g. 27 portitioning counting on

Subtraction

- Remove from a small group and find how many are leff, up to a total of 10 (take away and subitise, take away and count how many are left, use known facts)
- Subtract zero to 10
- Subtract pairs of 1-digit numbers
- Subtraction facts to 10

Bridging 10 by single digit subtraction

- Subtractl-digit from teens
- Subtractl-digit from ten
- Subtract 10 from a 2 -digit number using place value
- Bridging any 2 -digit 10 by single digit subtraction
- Subtract 1 -digit from multiple of 10
- Subtraction facts to 20
- Subtraction facts to 100 in 10 s
- Subtract 11 by subtracting 10 then 1
- Subtract 9 by subtracting 10 and adding 1
- Subtract 100 from any 3-digit number using place value
- Bridging HTU by U subtraction
- Subtract a 2 -digit number from a multiple of 10
- Subtract pairs of multiples of 10
up to 2-digit using bonds
- Subtract near multiples of 10 rounding up
- Subtract pairs of 2-digit using partitioning
- Subtract pairs of 2-digit using counting on
- Doubles to 5
- Double numbers to 5

Count forwards and backwards in
$2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

- Double numbers to 10

Double any multiple of 10 up to 50

- Recognize odd and even
- Rapid recall of $\times 2,10,5$ as a minimum
. Holve even numbers to 20
- Halve any multiple of 10 with an even tens digit up to 100
- Rapid recall of division facts for $\times 2,10,5$ as a minimum

Double any multiple of 10 up to 100

- Find 4 of a number by doubling and doubling again
- Rapid recall of $\times 3,4,8$ as a minimum
- Multiply any 2 -digit number by 10
- Multiply TU $\times \mathrm{U}$ using partitioning

Use place value and known facts to TU x U, e.g. 80×3

- Halve any multiple of 10 up to 100
- Find a quarter by halving and halving again
- Rapid recall of division facts for $x 3,4,8$ as a minimum
- Identify the remainder when dividing TU by $2,10,5$
- Divide any 3-digit multiple of 10 by 10
- Use place value and known facts to HTU \div U, e.g. $400 \div 8$

This is an over view of the minimum requirements for mental maths strategies to be taught in each year group for each operation.

They were created by combing teaching expertise, DfE Teaching Children to Calculate Mentally and the SPCFC materials from Together for Sunderland.

The strategies outlined for Year R, Year 1 and Year 2 correspond to those covered by most EYFS schemes and the main KSI fact fluency schemes (Number Sense, NCETM Mastering Number and W Fluency Bee).

Mental Calculation Expectations

- Add 1000 to any 4 -digit number
using place value
- Add pairs of multiples of 10 up to 3-digit using bonds
- 2-digit Near Doubles to 50, e.g. 36

ㅇ. $\quad+37$

- 2-digit near 10 s round up \& down (e.g. $27+19 / 21$)

Add 3 -digit numbers using
Add any 3-d
Add counting on counting on

Use place valu

Bridging (U.t + .t)
2-digit Near Doubles to 100, e.c. $76+77$
198)

- Add any U.t pairs (a. $3.5+2.8)$

7. using portitioning

- Add any U.t pairs (e.g $3.5+2.8$) using counting on iples of U.t by making $\times 10$ larger
- Subtract 1000 from any 4-digit number using place value
- Bridging THTU by U subtraction Subtract pairs of multiples of 10 up to 3 -digit using bonds
Subtract near multiples of 10
- Subtract any 3-digit num
ubtractitioningit numbers
- Subtract any 3-digit numbers
using counting on
-
- Use place value to subtract
- Bridging U.t by U subtraction
- Subtract near hundreds (e.g. 427 - 198)
- subtract any U.t pairs (e.g 3.5-
2.2) using partitioning
- subtract any U.t pairs (e.g 3.5 -
2.7) using counting on
tract pairs of mulfiples of U.t by making $\times 10$ larger

- Use place value to add powers of

- Bridging number
- Near doubles to tenths (e.g. $1.7+$ 1.6)
- Near tens to tenths (e.g. $4.2+1.9$)

Add any U.th pairs (e.g $3.52+$
2.87) using partitioning

- Add any U.th pairs (e.g $3.52+$ 2.87) counting on

Use place value to subtract

powers of 10 from any number
Subtract using near tens to tenth e.9. 4.6-1.9

Subtract any U.th pairs (e.g 3.52 2.31) using portitioning 2.31) using counting on-g 3.52 2.31) using counting on

- Double any 2-digit number
- Double any multiple of 100
- Rapid recall of all tables to 12×12
- Multiply three 1 -digit numbers
- Multiply any number to 100 by
- Multiply
- Multiply HTU $\times \mathrm{U}$ using partitioning to HTU $\times U$, e.g. 400×3
- Halve any even number to 100

Rapid recall of all division facts for tables to 12×12
Identify the remainder when dividing HTU by $2,10,5$

- Divide any number to 1000 by 10/100
Use place value and known facts to THTU \div U, e.g. $1200 \div 3$

[^0]and halving 2 dp
Multiply whole numbers and decimals by $10,100,1000$

- Multiply U.th $\times \mathrm{U}$ using partitioning
- Use place value and known facts
- or decimals, e.g. 0.3×4
- Multiply pairs of multiples of 10 with differing place value, e.g. 4000×30
- Halve any number including 2dp
- Halve 3 -digit multiples of 10
- Find the remainder when dividing TU by any single digit
- Divide whole numbers by

10,100,1000
Use place value and known facts to TTHTU $\div U$, e.g. $64000 \div 8$
with same pairs of multiples of 10 with same place
200 200

- Divide whole numbers and decimals by $10,100,1000$

Use place value and known facts Divide pairs of multiples differing place values of 10 with differing place value, e.g. $8000 \div$

- Divide by 50 by dividing by 100
- Divide by 25 by dividing by 100 and doubling and doubling again
- Divide by 20 by dividing by 10
and halving
- Divide by 5 by diving by 10 and doubling

This is an over view of the minimum requirements for mental maths strategies to be taught in each year group for each operation.

They were created by combing teaching expertise, DfE Teaching Children to Calculate Mentally and the SPCFC materials from Together for Sunderland.

The strategies outlined for Year R, Year 1 and Year 2 correspond to those covered by most EYFS schemes and the main KSI fact fluency schemes (Number Sense, NCETM Mastering Number and W Fluency Bee).

Year Group Plans

Reception, Year 1 \& 2

These skills are aligned with Number Sense and the supporting detail is to be found on Number Sense

EYFS \& KS1 Mental Calculation Strategies - Aligned with Number Sense

	Reception	Year 1	Year 2
Autumn 1	Subitising revisit Using tens frame revisit Cumulative fluency revisit	Subitising 1 to 5 Subitising 6-10 Composition / make \& break 5 Composition / make \& break 4, 3, 2 Composition / make \& break 10	Subitising revisit Using tens frame revisit Cumulative fluency revisit
Autumn 2	Adding 9 Adding 8 Adding 7 Subtracting back to 9 Subtracting back to 8 Subtracting back to 7	Composition / make \& break 6 Composition / make \& break 7 Composition / make \& break 8 Composition / make \& break	Adding 9 Adding 8 Adding 7 Subtracting back to 9 Subtracting back to 8 Subtracting back to 7
Spring 1	Doubles and halves Near doubles Hidden doubles Near tens addition (9) Near tens addition (9) Near tens subtraction (8) Near ten subtraction (8) Constant difference	One more One less Two more Two less Fact families to 3 Fact families to 5 Fact families to 10	Doubles and halves Near doubles Hidden doubles Near tens addition (9) Near tens addition (9) Near tens subtraction (8) Near ten subtraction (8) Constant difference
Spring 2	Fact Fluency Strategy Selection	Five and a bit; Zero Doubles; Near doubles	Fact Fluency Strategy Selection
Summer 1	Enumerating tens Adding tens Subtracting tens Adding ones Subtracting ones	Even number neighbours Odd number neighbours 7 tree 9 square	Enumerating tens Adding tens Subtracting tens Adding ones Subtracting ones
Summer 2	Fluency on number lines Fluency with part-part-whole models	Ten and a bit Consolidation \& gaps	Fluency on number lines Fluency with part-part-whole models

Lingfield \curvearrowleft

Year 3

Year 3 Mental Calculation Strategies

Place Value
 (3 weeks)

Place Value Addition
Add 100 to any 3-digit number using place value

- $\quad+10$ to 2 -digit using PV
- $\quad+10$ to 3-digit using PV
- $\quad+100$ to 3 -digit using PV
- Reasoning/choice session

Place Value Subtraction

Subtract 100 from any 3-digit number using PV

- - 10 from a 2-digit using PV
- - 10 from a 3-digit using PV
- - 100 from a 3-digit using PV
- Reasoning/choice session

Addition \& Subtraction (5 weeks)

Multiplication \& Division (4 weeks)

Double and Halve

Double and halve any multiple of 10 up to 100 100

- Double any multiple of 10 to 100 bridging 100
- Halve any multiple of 10 to 100 with an even tens digit
- Halve any multiple of 10 to 100 with an odd tens digit This will need lots of practice
- Reasoning/choice session

Double \& Double Again

Find 4 of a number by doubling and doubling Find 4 of a number by doubling and doubling again (1-digit number)

- Find 4 of a number by doubling and doubling again (2-digit multiples of 10)

Halve and Halve Again

Find a quarter by halving and halving again
Find a quarter of a number by halving and halving again

- Reasoning/choice session

Year 3 Mental Calculation Strategies

Addition \& Subtraction (7 weeks)

Near Doubles Addition

2-diait Near Doubles

- Teen + teen not bridging 10 (e.g. $13+12$)
- Teen + teen bridging 10 (e.g. $16+15$)
- Ten + ten not bridging 100 (e.g. $40+30$)
- Ten + ten bridging $100(60+50)$
- Reasoning/choice session

Hidden Doubles Addition
 2-digit Hidden Doubles

- Revisit hidden doubles within 10 (e.g. $7+5$)
- Hidden doubles using multiples of 10 to 100 not bridging 100 (e.g. $50+30$)
- Hidden doubles using multiples of 10 to 100 not bridging 100 (e.g. $70+50$)

Near Tens Addition

2-digit near 10 s round up

- $\quad \mathrm{TU}+9$
- $T U+19$
- $T U+29$
- TU + other _9 numbers not bridging 100
- TU + other _9 numbers bridging 100
- Reasoning/choice session

Near Tens Subtraction

Subtract near multiples of 10 rounding up

- TU-9
- TU-19
- TU-29
- TU - other _9 numbers not bridging 100
- Reasoning/choice session

Multiplication \& Division
 (5 weeks)

Multiply by powers of 10
Multiply whole numbers by 10

- Multiply 1-digit whole numbers by 10 , e.g. $7 \times 10=70$
- Multiply 2-digit whole numbers that are multiples of 10 by 10, e.g. $70 \times 10=700$
- Multiply 2-digit whole numbers by 10, e.g. $72 \times 10=720$
- Reasoning/choice session

Divide by powers of 10

Divide whole numbers by 10

- Divide 2-digit whole numbers that are multiples of 10 by 10 , e.g. $70 \div 10=7$
- Divide 3-digit whole numbers that are multiples of 100 by 10 , e.g. $200 \div 10=20$
- Divide 3-digit whole numbers that are multiples of 10 by 10 , e.g. $270 \div 10$
- Reasoning/choice session

Year 3 Mental Calculation Strategies

Multiplication \& Division (10 weeks)

Multiply using partitioning
Multiply TU $x \cup$ using partitioning

- TU $x U$ with the ones digit being one and no bridging, e.g. 31×3
- TU $x U$ with no bridging, e.g. 23×2
- TU $x U$ with tens boundary being crossed, e.g. 24×3
- TU $\times U$ with both boundaries being crossed, e.g. 42×8
- Reasoning/choice session

Use place value and known facts to multiply

Use place value and known facts to $T U \times U$

- TU \times U using known facts and PV, e.g. $80 \times 3,40 \times 3$
- TU $x U$ using facts from beyond $Y 3$ and PV, e.g. $90 \times 7,70 \times 7$
- Reasoning/choice session

Use place value and known facts to divide
Use place value and known facts to HTU

- TU \div U using known facts and PV, e.g. $80 \div 4$
- HTU $\div U$ using known facts and PV, e.g. $800 \div 4$
- Reasoning/choice session

Double and half to multiply

Use double \& halve to multiply ones and tens

- Explore with calculations with at least one even number that doubling one and halving another leads to the same answer (one-digit numbers e.g. 8+6)
- Explore with calculations with at least one even number that doubling one and halving another leads to the same answer (two-digit multiples of 10 e.g. 80+60)

Flexible Partitioning

Use flexible partitioning to divide 2-digit numbers

- Use flexible partitioning to divide a 2-digit by 1-digit with no remainders
- Use flexible partitioning to divide a 2-digit by 1-digit with remainders

Consolidation
 (2 weeks)

These weeks should be used for one/some of the following activities

- Spare time if the policy has not yet been covered
- Revisiting areas pupils were not as secure
- Further reasoning and choice activities.

Year 4

Year 4 Mental Calculation Strategies

$\begin{array}{cc}\text { Place Value } & \text { Addition \& Subtraction } \\ \text { (4 weeks) } & \text { (5 weeks) }\end{array}$

Place Value Addition

Add 1000 to any 4- digit number using place value

- THTU + 10 not bridging 100 (e.g. $4578+10$)
- THTU + 10 bridging 100 (e.g. $4598+10$)
- THTU + 100 not bridging 1000 (e.g. $3048+100$)
- THTU +100 bridging 1000 (e.g. $4987+100$)
- THTU + 1000 not bridging 10,000 (e.g. $8907+$ 1000)
- Reasoning/Choice Lesson

Place Value Subtraction

Subtract 1000 from any 4-digit number using PV

- THTU + 10 not bridging 100 (e.g. $4578+10$)
- THTU + 10 bridging 100 (e.g. $4598+10$)
- THTU + 100 not bridging 1000 (e.g. $3048+100$)
- THTU + 100 bridging 1000 (e.g. $4987+100$)
- THTU + 1000 not bridging 10,000 (e.g. $8907+$ 1000)
- Reasoning/Choice Lesson

Partition Addition

Add any 3-digit numbers using partitioning

- Add pairs of multiples of 10 to 100 using basic bonds facts to 10
- TU + TU not bridging 10s
- TU + TU bridging 10s
- TU + TU bridging 100
- HTU + HTU no bridging
- HTU + HTU with ones bridging
- HTU + HTU with 10s bridging
- HTU + HTU with 100s bridging
- HTU + HTU with 1000 s bridging
- HTU + HTU mixed bridging
- Reasoning/choice session

Number Line Addition

Number Line Addition
Add any 3-digit numbers using counting on

- Number line to add two 3-digit no bridging (e.g. 432+231)
- Bridging ten $(432+239)$
- Bridging $100(432+289)$
- Reasoning/choice session

Partition Subtraction

Subtract pairs of 3-digit using partitioning

- HTU - HTU where all digits in minuend are larger than those in the subtrahend (e.g. 345 - 122)

Number Line Subłraction

Subtract any 3-digit numbers using counting on - HTU - HTU counting on subtrahend to minuend

Multiplication \& Division

 (5 weeks)Double and Halve
Double and halve any multiple of 100 up to 1000

- Double any multiple of 100 to 1000 no bridging 1000
- Double any multiple of 100 to 1000 bridging 1000
- Halve any multiple of 100 to 1000 with an even hundreds digit
- Halve any multiple of 100 to 1000 with an odd hundreds digit This will need lots of practice
- Reasoning/choice session

Double \& Double Again

Find 4 of a number b \& quarter of a number

- Find 4 of a number by doubling and doubling again (3-digit multiples of 100)
- Find a quarter of a number by halving and halving again (3-digit multiples of 100)
- Reasoning/choice session

Year 4 Mental Calculation Strategies

Addition \& Subtraction
(7 weeks)

Near Doubles Addition

2-digit Near Doubles to 50

- TU + TU not bridging 50 (e.g. 24+23)
- TU + TU bridging 50 (e.g. $36+37$)
- Reasoning/choice session

Hidden Doubles Addition

2-digit Hidden Doubles to 50

- Revisit hidden doubles within 100 (e.g. $70+50$)
- Hidden doubles to 50 (e.g. $37+35$)
- Reasoning/choice session

Near Tens Addition

2-digit near 10s round up

- TU + 9
- $T U+19$
- TU + other _9 numbers not bridging 100
- Same with bridging
- TU + 11
- $T U+21$
- TU + other _1 numbers not bridging 100
- Same with bridging
- Reasoning/choice session

Near Tens Subtraction

Subtract near multiples of 10 rounding up

- TU-9
- TU-19
- TU - other _9 numbers not bridging 100
- TU-11
- TU-21
- TU - other _1 numbers not bridging 100
- Reasoning/choice session

Multiplication \& Division (5 weeks)

Multiply by powers of 10

Multiply whole numbers by 10 and 100

- Multiply whole numbers by 10
- Multiply whole numbers by 100
- Multiply whole numbers and decimals by 10 and 100 mixed
- Reasoning/choice session

Divide by powers of 10

Divide whole numbers by 10 and 100

- Divide whole numbers by 10
- Divide whole numbers by 100
- Divide whole numbers and decimals by 10 and 100 mixed
- Reasoning/choice session

Multiply more than two numbers

 Multiply 3 numbers- Multiply three 1-digit numbers to develop understanding of the associative property
- Reasoning/choice session

Year 4 Mental Calculation Strategies

Multiplication \& Division
(10 weeks)
Multiply using partitioning
Multiply HTU x U using partitioning

- No crossing of any boundaries, e.g. 213×3
- Crossing tens boundary, e.g. 214×3
- Crossing hundreds boundary, e.g. 478×2
- Crossing all boundaries, e.g. 346×6
- Reasoning/choice session

Use place value and known facts to multiply

Use place value and known facts to HTU \times U, e.g. 400×3

- 2-digit multiples of 10 multiplied by a single-digit number, e.g. $30 \times 4=120$
- Repeat for 3-digit multiple of 100 , e.g. $300 \times 4=1200$
- Reasoning/choice session

Use place value and known facts to divide
Use place value and known facts to THTU \div U, e.g. $1200 \div 3$

- 3-digit multiples of 10 divided by a single-digit number, e.g. $120 \div 4=30$ - 4-digit multiples of 100 divided by a single-digit number, e.g. $1200 \div 4=300$
- Reasoning/choice session

Double and half to multiply

Use double \& halve to multiply ones and tens

- Explore with calculations with at least one even number that doubling one and halving another leads to the same answer (three-digit multiples of 100 e.g 800+600)

Flexible Partitioning

Use double \& halve to multiply ones and tens

- Use flexible partitioning to divide a 3-digit by 1-digit with no remainders
- Use flexible partitioning to divide a 3-digit by 1-digit with remainders

Consolidation (2 weeks)

These weeks should be used for one/some of the following activities

- Spare time if the policy has not yet been covered
- Revisiting areas pupils were not as secure
- Further reasoning and choice activities.

Year 5

Year 5 Mental Calculation Strategies

Place Value
 (4 weeks)

Place Value Addition

Use place value to add powers of 10 to 1,000,000

- Add 10 to each place value size of numbers (e.g. 3-digit + 10, 7-digit + 10)
- Add 100 as above
- Add 1,000 as above
- Add 10,000 as above
- Add 100,000 as above
- Reasoning/Choice Lesson

Place Value Subtraction

Use PV to subtract powers of 10 up to 1,000,000

- Subtract 10 from each PV size of numbers
- Subtract 100 as above
- Subtract 1,000 as above
- Subtract 10,000 as above
- Subtract 100,000 as above
- Subtract 1,000,000 as above
- Reasoning/Choice Lesson

Addition \& Subtraction

(5 weeks)
Partition Addition
Add any U.t pairs (e.g. $3.5+2.8$) using partitioning

- Add pairs of multiples of 10 to 100 using basic bonds facts to 10
- TU + TU not bridging 10s
- TU + TU bridging 10s
- TU + TU bridging 100
- HTU + HTU no bridging
- HTU + HTU with ones bridging
- HTU + HTU with 10s bridging
- HTU + HTU with 100s bridging
- HTU + HTU with 1000 s bridging
- HTU + HTU mixed bridging
- Reasoning/choice session

Number Line Addition

Add any U.t pairs (e.g. $3.5+2.8$) using counting on

- U.t + U.t no boundary crossing (e.g. $7.4+2.1)$
- U.t + U.t with one boundary crossed (e.g. $4.5+$ 2.9)

Reasoning/choice session

Partition Subtraction

Subtract any U.t pairs using partitioning

- HTU - HTU where all digits in minuend are larger than those in the subtrahend (e.g. 345-122)
Reasoning/choice session

Number Line Subtraction

subtract any U.t pairs using counting on

- Subtract U.t - U.t counting on subtrahend to minuend
- Reasoning/choice session

Multiplication \& Division
(5 weeks)

Double

- Double 3-digit multiples of 10 (e.g. 270)
- Double any O.t number not bridging ones boundary (e.g 3.2)
- Double any O.t number bridging ones boundary (e.g 3.6)
- Reasoning/choice session

Halve

- Halve 3-digit multiples of 10 with no odd digits
- Halve 3-digit multiples of 10 with odd digits
- Halve any whole number with even digits
- Halve whole numbers with odd digits
- Reasoning/choice session

Year 5 Mental Calculation Strategies

Addition \& Subtraction

(7 weeks)
Near Doubles Addition
2-digit Near Doubles to 100

- TU + TU not bridging 100 (e.g. $47+46$)
- TU + TU bridging 100 (e.g. $76+77$)
- Reasoning/choice session
Hidden Doubles Addition
2-digit Hidden Doubles to 100
- Revisit hidden doubles within 100 (e.g. $70+50$)
- Hidden doubles to 100 (e.g. $77+75$)
- Reasoning/choice session

Near Tens Addition
 Add near hundreds

- HTU + 199
- HTU + 299
- HTU + _99
- HTU + 198
- HTU + 298
- HTU + _98
- Reasoning/choice session
Near Tens Subtraction
Subtract near hundreds
- HTU - 199
- HTU - 299
- HTU - _99
- HTU-198
- HTU-298
- HTU - _98
- Reasoning/choice session

Multiplication \& Division

 (5 weeks)
Multiply by powers of 10

Multiply whole numbers by 10, 100, 1000

- Multiply whole numbers by 10
- Multiply whole numbers by 100
- Multiply whole numbers by 1000
- Multiply whole numbers by 10,100, 1000 mixed
- Reasoning/choice session

Divide by powers of 10

Divide whole numbers by 10,100,1000

- Divide whole numbers by 10
- Divide whole numbers by 100
- Divide whole numbers and decimals by 10 and 100 mixed
- Reasoning/choice session

Add pairs of U.t by making $\mathbf{x} 10$ larger and then adjusting the answer

- U.t + U.t with no bridging whole by making x10 larger, e.g. $4.3+2.2=43+22=65$ $=6.5$
- U.t + U.t with bridging whole by making x 10 larger, e.g. $4.7+2.6=47+26=73=$ 7.3
- Reasoning/choice session

Subtract pairs of U.t by making x 10 larger and then adjusting the answer

- U.t - U.t with no crossing whole boundary by making x10 larger, e.g. $5.3-2.2=53$ $+22=31=3.1$
- U.t - U.t with crossing whole boundary by making x 10 larger, e.g. $4.7-1.9=47$ $19=28=2.8$
- Reasoning/choice session

Year 5 Mental Calculation Strategies

Multiplication \& Division (10 weeks)

Multiply using partitioning

Multiply U.t using partitioning

- No boundaries being crossed, e.g. 3.2×3
- One boundary being crossed, e.g. 2.4×3
- Ones and tens being crossed, e.g. 4.7×8
- Reasoning/choice session

Use place value and known facts to multiply

Use place value and known facts to THTU \times U, e.g. 8000×3

- 2-digit multiples of 10 multiplied by a single-digit number, e.g. $30 \times 4=120$
- Repeat for 3-digit multiple of 100 , e.g. $300 \times 4=1200$
- Repeat for 4 -digit multiple of 100 , e.g. $3000 \times 4=12000$
- Reasoning/choice session

Use place value and known facts to divide
Use place value and known facts to THTU \div U, e.g. $1200 \div 3$

- 3-digit multiples of 10 divided by a single-digit number, e.g. $120 \div 4=30$
- 4-digit multiples of 100 divided by a single-digit number, e.g. $1200 \div 4=300$
- 5-digit multiples of 1000 divided by a single-digit number, e.g. $12000 \div 4=3000$
- Reasoning/choice session

Double and half to multiply

Use double \& halve to multiply any 2-digit number

- Explore with calculations with at least one even number that doubling one and halving another leads to the same answer for any pair of 2-digit numbers where at least one is even (e.g. $25 \times 36=50 \times 18=100 \times 9$)
- Reasoning/choice session

Consolidation
(2 weeks)
Multiply by 50 by multiplying by 100 and halving

- TU (both digits even) $\times 100$ then halved (e.g. $42 \times 50=42 \times 100=4200 \div 2$
- Reasoning/choice session

Muliply by 25 by multiplying by 100 and halving and halving again

- TU (both digits even) x 100 then halved and halved again (e.g. $42 \times 25=42 \times 100$ $=4200 \div 2=2100 \div 2=1050)$
- Reasoning/choice session

Multiply by 20 by multiplying by 10 and doubling

- TU x 10 then doubled
- HTU x10 then doubled
- THTU x10 then doubled
- Progress to decimals
- Reasoning/choice session

Multiply by 5 by multiplying by 10 and halving

- TU (both digits even) $\times 5$ then halved
- HTU(all digits even) $\times 5$ then halved
- THTU(all digits even) $x 5$ then halved
- TU (odd tens) x100 then halved
- TU (odd ones digit) $x 5$ then halved
- HTU \& THTU work through to odd digits as above
- Progress to decimals
- Reasoning/choice session

Year 6

Year 6 Mental Calculation Strategies

Place Value
 (4 weeks)

Place Value Addition

Use PV to add powers of 10 to any number

- Add 10 to each PV size of numbers
- Add 100 as above
- Add 1,000 as above
- Add 10,000 as above
- Add 100,000 as above
- Add 1,000,000 as above
- Reasoning/Choice Lesson

Place Value Subtraction

Use PV to subtract powers of 10 from any number

- Subtract 10 from each PV size of numbers
- Subtract 100 as above
- Subtract 1,000 as above
- Subtract 10,000 as above
- Subtract 100,000 as above
- Subtract 1,000,000 as above
- Reasoning/Choice Lesson

Addition \& Subtraction
 (5 weeks)

Partition Addition
Add any U.th pairs (e.g. $3.52+2.87$)

- U.th + .th not bridging whole (e.g. $3.51+0.02$)
- U.t + .t bridging whole (e.g. $3.55+0.08$)
- U.th + U.th not bridging tenth (e.g. $3.51+2.32$)
- U.th + U.th bridging tenths(e.g. 3.56 + 2.29)
- Reasoning/choice session

Number Line Addition

Add any U.th pairs (e.g. $3.52+2.87$) counting on

- U.th + U.th no boundary crossing (e.g. $7.42+$ 2.13)
- U.th + U.th with tenth boundary crossed (e.g. 4.56 + 2.99) then ones
- Reasoning/choice session

Partition Subtraction

Subtract any U.th pairs (e.g. 3.52-2.31)

- U.th - U.th not bridging where all digits in minuend are larger than those in the subtrahend (e.g. 7.36-2.12)
Reasoning/choice session
Number Line Subtraction
subtract any U.t pairs using counting on
- U.th - U.th counting on subtrahend to minuend
- Reasoning/choice session

Multiplication \& Division (5 weeks)

Double

Double any number including to 2 dp

- Double U.th with all digits same and no bridging, e.g. 3.33
- Double U.th with no bridging, e.g. 4.23
- Double with tenth boundary being crossed, e.g 4.27
- Double with tenth and whole being crossed, e.g. 4.68
- Double with further integer boundaries being crossed
- Reasoning/choice session

Halve

Halve any number including 2dp

- 2-digit $1 d p$ with only even digits
- 3-digit 2 dp with only even digits
- 2-digit $1 d p$ with only odd tenths digits
- 3-digit 2 dp with odd tenths
- 3-digit 2dp with odd tenths and hundredths
- Reasoning/choice session

Year 6 Mental Calculation Strategies

Addition \& Subtraction
(7 weeks)
Near Doubles Addition
Near doubles to tenths

- U. $\dagger+$ U.t not bridging ones (e.g. $2.3+2.2$)
- U.t + U.t bridging ones (e.g. $1.7+1.6$)
- Reasoning/choice session

$\frac{€}{\varrho}$	Near Tens Addition Near tens to tenths
	- U.t + $0.9>1.9>-.9$ - U. $\mathrm{t}+0.8>1.8>-.8$ - U.t + $1.1>2.1>. .1$ - Reasoning/choice session
$\frac{\overline{\mathrm{Q}}}{\substack{2}}$	Near Tens Subtraction subtract using near tens to tenths
	- U.t - $0.9>1.9>1.9$ - U.t - $0.8>1.8>$ _. 8 - U.t-1.1>2.1> . 1 - Reasoning/choice session

- Hidden doubles to 100 (e.g. $0.7+0.5$)
- Reasoning/choice session

Hidden Doubles Addition
 Hidden Doubles Adaition Hidden Doubles to tenths

Near Tens Addition
Near tens to tenths

- U.t + $1.1>2.1>-.1$

Near Tens Subtraction

- U.t- $0.9>1.9>.9$
- U.t-0.8>1.8> _. 8
- U.t-1.1>2.1> _. 1
- Reasoning/choice session

Multiplication \& Division

(5 weeks)

Multiply by powers of 10
Multiply decimals by 10, 100, 1000

- Multiply decimals by 10
- Multiply decimals by 100
- Multiply decimals by 1000
- Multiply whole numbers and decimals by 10, 100, 1000 mixed
- Reasoning/choice session

Divide by powers of 10

Divide decimals by 10, 100, 1000

- Divide decimals by 10
- Divide decimals by 100
- Divide decimals by 1000
- Divide whole numbers and decimals by 10, 100, 1000 mixed
- Reasoning/choice session

Year 6 Mental Calculation Strategies

Multiplication \& Division (10 weeks)

Multiply using parititioning

Multiply U.th $\times U$ using partitioning

- No boundaries being crossed, e.g. 3.22×3
- tenth boundary being crossed, e.g. 3.24×3
- ones boundary now being crossed, e.g. 3.45×4
- Reasoning/choice session

Use place value and known facts to multiply

Use place value and known facts for decimals, e.g. 0.3×4

- 2-digit multiples of 10 multiplied by a single-digit number, e.g. $30 \times 4=120$
- Repeat for 3-digit multiple of 100 , e.g. $300 \times 4=1200$
- Repeat for 4 -digit multiple of 100 , e.g. $3000 \times 4=12000$
- Repeat for tenths 0.3×4 and reverse
- Reasoning/choice session

Use place value and known facts to divide

Use place value and known facts for decimals, e.g. $3.2 \div 8$

- 3-digit multiples of 10 divided by a single-digit number, e.g. $120 \div 4=30$
- 4-digit multiples of 100 divided by a single-digit number, e.g. $1200 \div 4=300$
- 5-digit multiples of 1000 divided by a single-digit number, e.g. $12000 \div 4=3000$
- Repeat for tenths: $3.2 \div 8$
- Reasoning/choice session

Double and half to multiply

Use double \& halve to multiply any 2-digit number

- Explore with calculations with at least one even number that doubling one and halving another leads to the same answer for any pair of 2-digit numbers where at least one is even (e.g. $25 \times 36=50 \times 18=100 \times 9$)
- Reasoning/choice session

Consolidation
(2 weeks)
Multiply by 50 by multiplying by 100 and halving

- TU (both digits even) $\times 100$ then halved (e.g. $42 \times 50=42 \times 100=4200 \div 2$)
- Reasoning/choice session

Multiply by 25 by multiplying by 100 and halving and halving again

- TU (both digits even) $\times 100$ then halved and halved again (e.g. $42 \times 25=42 \times 100$ $=4200 \div 2=2100 \div 2=1050$)
- Reasoning/choice session

Multiply by 20 by multiplying by 10 and doubling

- TU x 10 then doubled
- HTU $\times 10$ then doubled
- THTU x10 then doubled
- Progress to decimals
- Reasoning/choice session

Multiply by 5 by multiplying by 10 and halving

- TU (both digits even) $x 5$ then halved
- HTU(all digits even) $x 5$ then halved
- THTU(all digits even) x5 then halved
- TU (odd tens) $\times 100$ then halved
- TU (odd ones digit) $\times 5$ then halved
- HTU \& THTU work through to odd digits as above
- Progress to decimals
- Reasoning/choice session

Strategy Examples

$$
\begin{array}{ll}
8^{4} 4+x 0=44 & \frac{6}{13}-x 0=63 \\
2^{8} 73+x 0=283 & 45^{5} 5-x 0=455 \\
\frac{4}{367}+x 00=467 & 3^{5} 72-100=3572
\end{array}
$$

or
$46+23$
$40+20=60$

$$
\begin{aligned}
& 73-21 \\
& 70-20=50 \\
& 3-1=2=52
\end{aligned}
$$

or

$$
73-21=73-20=53-1=52
$$

$$
53+28
$$

$$
=47
$$

$$
\begin{aligned}
& 16+171=32+1=33 \\
& 356+35=70+1=71 \\
& 4 \cdot 5 \\
& 4 \cdot 6+4 \cdot 5=9+0 \cdot 1=9 \cdot 1
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{6}{1+b^{6}}=12 \\
& 80-80 \\
& 90+80=160 \\
& 0.7 \Rightarrow 0.7 \\
& 08+0.6=1.4
\end{aligned}
$$

$$
46-\stackrel{10}{9}=36+1=37^{2}
$$

or

$$
\begin{aligned}
& 47 \\
& 46-4 \\
& \hline 6
\end{aligned}=37
$$

$$
\begin{aligned}
& \begin{array}{l}
25 \\
26
\end{array}+9=35 \\
& 4 \begin{array}{l}
46 \\
4 \times 19
\end{array}=56 \\
& 4.5 \rightarrow 30 \\
& 4 \cdot 6+2 \cdot 9=7.5
\end{aligned}
$$

Halving odd digits

70

$$
\begin{aligned}
80 & \rightarrow 40 \\
70 & \rightarrow 35^{\wedge} \\
60 & \rightarrow 30
\end{aligned}
$$

900

$$
\begin{aligned}
& 1000-500 \\
& 900 \rightarrow 450 \\
& 800-400^{4} \text { middle }
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{37^{21}}_{90}=111 \\
& \text { or } \\
& 37 \times 3 \\
& 30 \times 3-90 \\
& 7 \times 3=21
\end{aligned}=111
$$

$$
25 \times 36=900
$$

$$
\begin{aligned}
& 25 \times 36 \\
& 50 \times 18 \\
& 100 \times 9=900
\end{aligned}
$$

PV \& known facts to multiply

$$
\begin{aligned}
& 7 \varnothing \times 7=490 \\
& 3 \varnothing \varnothing \times 6 \varnothing=18,000
\end{aligned}
$$

$$
2.8 \times 9=7.2
$$

PV \& known facts to divide
$280 Q \div 7=400$

cancel out in division if same times smaller on eachside

$$
48 \phi \phi-6 \phi=80
$$

* unequal on each side

[^0]: - Double 3-digit multiples of 10
 - Double U.t

 Multiply who
 $10,100,1000$

 - Use place vaing partitioning
 to THTU \times U, e.g. 8000×3
 - Multiply pairs of multiples of 10 with same place value, e.g. $400 \times$
 - Multiply by 50 by multiplying by
 - 100 and halving
 - Multiply by 25 by multiplying by 100 and
 again
 - Multiply by 20 by multiplying by 10
 and doubling
 - Multiply by 5 by multiplying by 10

